
24.10.2022

FASTTOKEN SMART
CONTRACT
AUDIT REPORT

1

+44 1173 182250 info@hexens.io

⬢ Summary / 3

⬢ Scope / 3

⬢ Weaknesses / 4

⬡ Incorrect owner change logic in multisig / 4

⬡ Improve events / 6

⬡ Redundant view methods / 7

⬡ Structures used with arrays / 8

⬡ Gas optimisation / 9

⬡ Floating pragma / 10

⬡ Grieving by owners / 11

CONTENTS

2

+44 1173 182250 info@hexens.io

TOTAL: 7

The analyzed resources are located on:
https://github.com/fasttoken1/fasttoken-distribution-eth-contr
acts/commit/8c6dc446f99233154c39aec789c2b08deafac165

The issues described in this report were fixed in the following
commit:
https://github.com/fasttoken1/fasttoken-distribution-eth-contr
acts/commit/56dd4ee95f995046cdbdb7ac2e6c658c54cf1a64

SUMMARY

SCOPE

3

HIGH

CRITICAL

MEDIUM

0

1

1

LOW 2

INFORMATIONAL 3

SEVERITY NUMBER OF FINDINGS

https://github.com/fasttoken1/fasttoken-distribution-eth-contracts/commit/8c6dc446f99233154c39aec789c2b08deafac165
https://github.com/fasttoken1/fasttoken-distribution-eth-contracts/commit/8c6dc446f99233154c39aec789c2b08deafac165
https://github.com/fasttoken1/fasttoken-distribution-eth-contracts/commit/56dd4ee95f995046cdbdb7ac2e6c658c54cf1a64
https://github.com/fasttoken1/fasttoken-distribution-eth-contracts/commit/56dd4ee95f995046cdbdb7ac2e6c658c54cf1a64

+44 1173 182250 info@hexens.io

1. INCORRECT OWNER CHANGE
LOGIC IN MULTISIG

SEVERITY: High

PATH: MultiSigWallet.sol:25

REMEDIATION: invert conditions by respectively removing and
adding the negation operator, so they match logically with the
revert reason

STATUS: fixed

DESCRIPTION:

The conditions at lines 126-127 are both inverted (but not their “reason”,

which is correct), making owner change executions revert when they

should pass and vice versa. Since these requirements directly contradict

the conditions imposed when the transaction was submitted (lines 92-93),

this leaves the contract without any means to update owner addresses.

WEAKNESSES

4

This section contains the list of discovered weaknesses.

+44 1173 182250 info@hexens.io 5

if (TransactionType.ChangeOwner == transaction.transactionType) {

 require(! isOwner[transaction.address1], 'address1 must be owner');

 require(isOwner[transaction.address2], 'address2 cannot be

owner');

 uint256 index = _ownerIndex(transaction.address1);

 owners[index] = transaction.address2;

 isOwner[transaction.address1] = false;

 isOwner[transaction.address2] = true;

 }

+44 1173 182250 info@hexens.io

2. IMPROVE EVENTS

SEVERITY: Medium

PATH: MultiSigWallet.sol

REMEDIATION: improve the events to contain the caller’s address
as well

STATUS: acknowledged

DESCRIPTION:

The following event signatures contain only transaction index information

and don't show the address that invoked the action. Not having an invoker

address logged in the event rises a possibility for phishing attacks on

owner change mechanisms; as one can start a vote to change other

owner’s public key.

6

emit SubmitTransaction(txIndex);

emit ConfirmTransaction(_txIndex);

emit ExecuteTransaction(_txIndex);

emit RevokeConfirmation(_txIndex);

+44 1173 182250 info@hexens.io

3. REDUNDANT VIEW METHODS

SEVERITY: Low

PATH: MultiSigWallet.sol:158, 168

REMEDIATION: change variable visibility from public to internal,
or delete the getter method to save on gas

STATUS: acknowledged

DESCRIPTION:

The listed methods duplicate the functionality provided by the compiler for

all public variables, which include a getter in the ABI, making them or the

custom getters redundant.

7

 function getOwners() public view returns (address[] memory) {

 return owners;

 }

…

 function getTransactions() public view returns (Transaction[] memory) {

 return transactions;

 }

+44 1173 182250 info@hexens.io

4. STRUCTURES USED WITH ARRAYS

SEVERITY: Low

PATH: MultiSigWallet.sol:25

REMEDIATION: use a mapping instead of an array, add an index
array if necessary

STATUS: acknowledged

DESCRIPTION:

Arrays and structs don’t play well together in Solidity, but in most cases

using a mapping solves the issue and offers efficiency gains.

8

 address[] public owners;

 mapping(address => bool) public isOwner;

 uint256 public numberOfRequiredConfirmations;

 // mapping from transaction index => owner index => bool

 mapping(uint256 => mapping(uint256 => bool)) public isConfirmed;

 Transaction[] public transactions;

+44 1173 182250 info@hexens.io

5. GAS OPTIMISATION

SEVERITY: Informational

PATH: MultiSigWallet.sol

REMEDIATION: change the visibility to external

STATUS: acknowledged

DESCRIPTION:

The methods listed below are not being used locally, their visibility is

excessive.

MultiSigWallet.sol

● submitTransaction():L82

● confirmTransaction():L101

● executeTransaction():L116

● revokeConfirmation():L141

● getOwners():L158

● getTransactionCount():L163

● getTransactions():L168

9

+44 1173 182250 info@hexens.io

6. FLOATING PRAGMA

SEVERITY: Informational

PATH: MultiSigWallet.sol, FasttokenDistribution.sol, Fasttoken.sol

REMEDIATION: modify the pragma to enforce a version at least
equal to the latest stable compiler version

STATUS: fixed

DESCRIPTION:

The pragma is defined with a caret (^), allowing any version higher than

0.8.0 to compile the code. For the branch that will contain the code to be

deployed, it is recommended to use a fixed pragma (without caret), to

ensure compilations are consistent across time and dev environments,

and contract verification is made easier.

10

pragma solidity ^0.8.0;

+44 1173 182250 info@hexens.io

7. GRIEVING BY OWNERS

SEVERITY: Informational

PATH: MultiSigWallet.sol:141

REMEDIATION: to entirely avoid this scenario, at the expense of
slower execution speed, introduce a period for confirmation and
a period for revoke, then execute transactions only after revoke
period

STATUS: acknowledged

DESCRIPTION:

Owners are considered friendly unless compromised. In this case, hostile

owners are able to sign transactions, making it seem like it can be

executed, then frontrun the execution transaction with a cancel

confirmation tx, getting below threshold and failing the execution.

This is only slightly different from grieving by refusing to sign, and is

therefore rated only informational.

11

+44 1173 182250 info@hexens.io 12

function revokeConfirmation(uint256 _txIndex)

 public

 onlyOwner

 transactionExists(_txIndex)

 notExecuted(_txIndex) {

 Transaction storage transaction = transactions[_txIndex];

 uint256 index = _ownerIndex(msg.sender);

 require(isConfirmed[_txIndex][index], 'transaction not confirmed');

 transaction.numberOfConfirmations -= 1;

 isConfirmed[_txIndex][index] = false;

 emit RevokeConfirmation(_txIndex);

 }

13

